Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
2.
Am J Med Genet A ; 191(5): 1425-1429, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36814386

RESUMO

Variants in genes encoding core components of the spliceosomes are associated with craniofacial syndromes, collectively called craniofacial spliceosomopathies. SNRPE encodes a core component of pre-mRNA processing U-rich small nuclear ribonuclear proteins (UsnRNPs). Heterozygous variants in SNRPE have been reported in six families with isolated hypotrichosis simplex in addition to one case of isolated non syndromic congenital microcephaly. Here, we report a patient with a novel blended phenotype of microcephaly and congenital atrichia with multiple congenital anomalies due to a de novo intronic SNRPE deletion, c.82-28_82-16del, which results in exon skipping. As discussed within, this phenotype, which we propose be named SNRPE-related syndromic microcephaly and hypotrichosis, overlaps other craniofacial splicesosomopathies.


Assuntos
Anormalidades Múltiplas , Hipotricose , Microcefalia , Humanos , Microcefalia/diagnóstico , Microcefalia/genética , Microcefalia/complicações , Fenótipo , Alopecia/complicações , Hipotricose/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Proteínas Centrais de snRNP/genética
3.
Exp Dermatol ; 32(5): 699-706, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36811447

RESUMO

Mutilating palmoplantar keratoderma (PPK) is a heterogeneous genetic disease that poses enormous challenges to clinical diagnosis and genetic counselling. Lanosterol synthase (LSS) gene encodes LSS involved in the biosynthesis pathway of cholesterol. Biallelic mutations in LSS were found to be related to diseases such as cataracts, hypotrichosis and palmoplantar keratoderma-congenital alopecia syndrome. The aim of this study was to investigate the contribution of the LSS mutation to mutilating PPK in a Chinese patient. The clinical and molecular characteristics of the patient were evaluated. A 38-year-old male patient with mutilating PPK was recruited in this study. We identified biallelic variants in the LSS gene (c.683C > T, p.Thr228Ile and c.779G > A, p.Arg260His). Immunoblotting revealed that the Arg260His mutant showed a significantly reduced expression level while Thr228Ile showed an expression level similar to that of the wild type. Thin layer chromatography revealed that mutant Thr228Ile retained partial enzymatic activity and mutant Arg260His did not show any catalytic activity. Our findings show the correlation between LSS mutations and mutilating PPK.


Assuntos
Hipotricose , Ceratodermia Palmar e Plantar , Masculino , Humanos , Adulto , Alopecia/genética , Hipotricose/genética , Mutação , Ceratodermia Palmar e Plantar/genética , Linhagem
4.
Clin Genet ; 103(3): 301-309, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36371786

RESUMO

Cystatin M/E (encoded by the CST6 gene) is a cysteine protease inhibitor, that exerts regulatory and protective effects against uncontrolled proteolysis mainly by directly regulating cathepsin V, cathepsin L, and legumain activities. Previous studies have suggested that CST6 may exert a regulatory role in epidermal differentiation and hair follicle formation by inhibiting the activity of respective cognate target proteases. However, until recently, studies have revealed that loss- or gain-of-function of the CST6 gene causes dry skin with hypotrichosis in humans. Here, we reported two siblings of Chinese origin with dry skin, desquamation and abnormal keratosis without hypotrichosis. By applying whole-exome sequencing, we identified homozygous loss-of-function mutation c.251G > A (p.Gly84Asp) in the CST6 gene as the underlying genetic cause. Further fluorimetric enzyme assays demonstrated the mutant cystatin M/E protein lost its inhibitory function on the protease activity of cathepsins. Moreover, the corresponding mutation in mice resulted in excessive cornification, desquamation, impaired skin barrier function, and abnormal proliferation and differentiation of keratinocytes. In conclusion, the homozygous missense mutation c.251G > A in CST6 gene resulted in dry skin, desquamation, as well as abnormal keratosis of the skin, promoting our understanding of the role of protease-antiprotease balance in human skin disorders.


Assuntos
Hipotricose , Ceratose , Humanos , Animais , Camundongos , Epiderme/metabolismo , Cistatina M/genética , Cistatina M/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Hipotricose/genética , Mutação/genética
5.
Br J Dermatol ; 187(6): 948-961, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35986704

RESUMO

BACKGROUND: Bazex-Dupré-Christol syndrome (BDCS; MIM301845) is a rare X-linked dominant genodermatosis characterized by follicular atrophoderma, congenital hypotrichosis and multiple basal cell carcinomas (BCCs). Previous studies have linked BDCS to an 11·4-Mb interval on chromosome Xq25-q27.1. However, the genetic mechanism of BDCS remains an open question. OBJECTIVES: To investigate the genetic aetiology and molecular mechanisms underlying BDCS. METHODS: We ascertained multiple individuals from eight unrelated families affected with BDCS (F1-F8). Whole-exome (F1 and F2) and genome sequencing (F3) were performed to identify putative disease-causing variants within the linkage region. Array comparative genomic hybridization and quantitative polymerase chain reaction (PCR) were used to explore copy number variations, followed by long-range gap PCR and Sanger sequencing to amplify the duplication junctions and to define the head-tail junctions. Hi-C was performed on dermal fibroblasts from two affected individuals with BDCS and one control. Public datasets and tools were used to identify regulatory elements and transcription factor binding sites within the minimal duplicated region. Immunofluorescence was performed in hair follicles, BCCs and trichoepitheliomas from patients with BDCS and sporadic BCCs. The ACTRT1 variant c.547dup (p.Met183Asnfs*17), previously proposed to cause BDCS, was evaluated with t allele frequency calculator. RESULTS: In eight families with BDCS, we identified overlapping 18-135-kb duplications (six inherited and two de novo) at Xq26.1, flanked by ARHGAP36 and IGSF1. Hi-C showed that the duplications did not affect the topologically associated domain, but may alter the interactions between flanking genes and putative enhancers located in the minimal duplicated region. We detected ARHGAP36 expression near the control hair follicular stem cell compartment, and found increased ARHGAP36 levels in hair follicles in telogen, in BCCs and in trichoepitheliomas from patients with BDCS. ARHGAP36 was also detected in sporadic BCCs from individuals without BDCS. Our modelling showed the predicted maximum tolerated minor allele frequency of ACTRT1 variants in control populations to be orders of magnitude higher than expected for a high-penetrant ultra-rare disorder, suggesting loss of function of ACTRT1 variants to be an unlikely cause for BDCS. CONCLUSIONS: Noncoding Xq26.1 duplications cause BDCS. The BDCS duplications most likely lead to dysregulation of ARHGAP36. ARHGAP36 is a potential therapeutic target for both inherited and sporadic BCCs. What is already known about this topic? Bazex-Dupré-Christol syndrome (BDCS) is a rare X-linked basal cell carcinoma susceptibility syndrome linked to an 11·4-Mb interval on chromosome Xq25-q27.1. Loss-of-function variants in ACTRT1 and its regulatory elements were suggested to cause BDCS. What does this study add? BDCS is caused by small tandem noncoding intergenic duplications at chromosome Xq26.1. The Xq26.1 BDCS duplications likely dysregulate ARHGAP36, the flanking centromeric gene. ACTRT1 loss-of-function variants are unlikely to cause BDCS. What is the translational message? This study provides the basis for accurate genetic testing for BDCS, which will aid precise diagnosis and appropriate surveillance and clinical management. ARHGAP36 may be a novel therapeutic target for all forms of sporadic basal cell carcinomas.


Assuntos
Carcinoma Basocelular , Hipotricose , Humanos , Carcinoma Basocelular/patologia , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA/genética , Células Germinativas/patologia , Hipotricose/genética , Hipotricose/patologia , Proteínas dos Microfilamentos
8.
Ophthalmic Genet ; 43(3): 420-424, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35038959

RESUMO

BACKGROUND: Pathogenic variants in the Cadherin 3 (CDH3) gene are responsible for the occurrence of Hypotrichosis with Juvenile Macular Dystrophy (HJMD) and Ectodermal Dysplasia, Ectrodactyly and Macular Dystrophy Syndrome (EEMS), both of which are rare autosomal recessive disorders characterized by hypotrichosis and progressive macular dystrophy. The CDH3 gene encodes for P-cadherin, a calcium-binding protein that is essential for cell-cell adhesion, which is expressed in the retinal pigment epithelial cells and hair follicles. MATERIALS AND METHODS: Fundus examination of both eyes was done in addition to clinical investigation. Genomic DNA was extracted from a whole-blood sample and whole-exome sequencing (WES) was performed to identify the underlying etiology.All identified variants were evaluated for their pathogenicity and causality. RESULTS: We present the first case of HJMD in a 23-year-old female patient from Jordan. The patient presented to our ophthalmology clinic with poor vision in both eyes. Gross examination revealed sparse scalp hair along with macular dystrophy on fundus exam in both eyes. HJMD was suspected and whole-exome sequencing (WES) confirmed the diagnosis with the identification of a homozygous frameshift deletion (p.Gly277AlafsTer20) localised in exon 7 of the CDH3 gene. CONCLUSION: Blindness due to progressive macular degeneration is a common manifestation in numerous syndromic recessive disorders such as HJMD. Ophthalmologists should consider the importance of systemic manifestations and genetic testing for the confirmation of diagnosis.


Assuntos
Hipotricose , Degeneração Macular , Adulto , Caderinas/genética , Caderinas/metabolismo , Feminino , Humanos , Hipotricose/diagnóstico , Hipotricose/genética , Jordânia , Degeneração Macular/diagnóstico , Degeneração Macular/genética , Linhagem , Doença de Stargardt , Adulto Jovem
9.
J Dermatol ; 49(1): 55-67, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34676598

RESUMO

Genetic hair disorders, although unusual, are not very rare, and dermatologists often have opportunities to see patients. Significant advances in molecular genetics have led to identifying many causative genes for genetic hair disorders, including the recently identified causative genes, such as LSS and C3ORF52. Many patients have been detected with autosomal recessive woolly hair/hypotrichosis in the Japanese population caused by founder mutations in the LIPH gene. Additionally, many patients with genetic hair disorders caused by other genes have been reported in East Asia including Japan. Understanding genetic hair disorders is essential for dermatologists, and the findings obtained from analyzing these diseases will contribute to revealing the mechanisms of hair follicle morphogenesis and development in humans.


Assuntos
Doenças do Cabelo , Hipotricose , Genes Recessivos , Cabelo , Doenças do Cabelo/genética , Humanos , Hipotricose/genética , Japão/epidemiologia , Lipase/genética , Mutação , Linhagem
10.
BMC Med Genomics ; 14(1): 254, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34706719

RESUMO

BACKGROUND: The switch/sucrose nonfermenting (SWI/SNF) complex is an adenosine triphosphate-dependent chromatin-remodeling complex associated with the regulation of DNA accessibility. Germline mutations in the components of the SWI/SNF complex are related to human developmental disorders, including the Coffin-Siris syndrome (CSS), Nicolaides-Baraitser syndrome (NCBRS), and nonsyndromic intellectual disability. These disorders are collectively referred to as SWI/SNF complex-related intellectual disability disorders (SSRIDDs). METHODS: Whole-exome sequencing was performed in 564 Korean patients with neurodevelopmental disorders. Twelve patients with SSRIDDs (2.1%) were identified and their medical records were retrospectively analyzed. RESULTS: ARID1B, found in eight patients, was the most frequently altered gene. Four patients harbored pathogenic variants in SMARCA4, SMARCB1, ARID2, and SMARCA2. Ten patients were diagnosed with CSS, and one patient without a typical phenotype was diagnosed with ARID1B-related nonsyndromic intellectual disability. Another patient harboring the SMARCA2 pathogenic variant was diagnosed with NCBRS. All pathogenic variants in ARID1B were truncating, whereas variants in SMARCA2, SMARCB1, and SMARCA4 were nontruncating (missense). Frequently observed phenotypes were thick eyebrows (10/12), hypertrichosis (8/12), coarse face (8/12), thick lips (8/12), and long eyelashes (8/12). Developmental delay was observed in all patients, and profound speech delay was also characteristic. Agenesis or hypoplasia of the corpus callosum was observed in half of the patients (6/12). CONCLUSIONS: SSRIDDs have a broad disease spectrum, including NCBRS, CSS, and ARID1B-related nonsyndromic intellectual disability. Thus, SSRIDDs should be considered as a small but important cause of human developmental disorders.


Assuntos
Anormalidades Múltiplas/genética , Face/anormalidades , Deformidades Congênitas do Pé/genética , Deformidades Congênitas da Mão/genética , Hipotricose/genética , Deficiência Intelectual/genética , Micrognatismo/genética , Pescoço/anormalidades , Fenótipo , Fácies , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , República da Coreia
11.
Genes (Basel) ; 12(7)2021 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-34356054

RESUMO

Genodermatoses, such as heritable skin disorders, mostly represent Mendelian conditions. Congenital hypotrichosis (HY) characterize a condition of being born with less hair than normal. The purpose of this study was to characterize the clinicopathological phenotype of a breed-specific non-syndromic form of HY in Hereford cattle and to identify the causative genetic variant for this recessive disorder. Affected calves showed a very short, fine, wooly, kinky and curly coat over all parts of the body, with a major expression in the ears, the inner part of the limbs, and in the thoracic-abdominal region. Histopathology showed a severely altered morphology of the inner root sheath (IRS) of the hair follicle with abnormal Huxley and Henle's layers and severely dysplastic hair shafts. A genome-wide association study revealed an association signal on chromosome 5. Homozygosity mapping in a subset of cases refined the HY locus to a 690 kb critical interval encompassing a cluster of type II keratin encoding genes. Protein-coding exons of six positional candidate genes with known hair or hair follicle function were re-sequenced. This revealed a protein-changing variant in the KRT71 gene that encodes a type II keratin specifically expressed in the IRS of the hair follicle (c.281delTGTGCCCA; p.Met94AsnfsX14). Besides obvious phenocopies, a perfect concordance between the presence of this most likely pathogenic loss-of-function variant located in the head domain of KRT71 and the HY phenotype was found. This recessive KRT71-related form of hypotrichosis provides a novel large animal model for similar human conditions. The results have been incorporated in the Online Mendelian Inheritance in Animals (OMIA) database (OMIA 002114-9913).


Assuntos
Doenças dos Bovinos/genética , Folículo Piloso , Hipotricose/genética , Hipotricose/veterinária , Queratinas Específicas do Cabelo/genética , Animais , Bovinos , Éxons/genética , Feminino , Estudo de Associação Genômica Ampla/veterinária , Cabelo , Homozigoto , Hipotricose/metabolismo , Hipotricose/patologia , Masculino , Fenótipo , Medicina de Precisão
13.
Commun Biol ; 4(1): 544, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972689

RESUMO

Actin-Related Protein-Testis1 (ARP-T1)/ACTRT1 gene mutations cause the Bazex-Dupré-Christol Syndrome (BDCS) characterized by follicular atrophoderma, hypotrichosis, and basal cell cancer. Here, we report an ARP-T1 interactome (PXD016557) that includes proteins involved in ciliogenesis, endosomal recycling, and septin ring formation. In agreement, ARP-T1 localizes to the midbody during cytokinesis and the basal body of primary cilia in interphase. Tissue samples from ARP-T1-associated BDCS patients have reduced ciliary length. The severity of the shortened cilia significantly correlates with the ARP-T1 levels, which was further validated by ACTRT1 knockdown in culture cells. Thus, we propose that ARP-T1 participates in the regulation of cilia length and that ARP-T1-associated BDCS is a case of skin cancer with ciliopathy characteristics.


Assuntos
Carcinoma Basocelular/patologia , Cílios/patologia , Ciliopatias/patologia , Hipotricose/patologia , Queratinócitos/patologia , Proteínas dos Microfilamentos/metabolismo , Neoplasia de Células Basais/patologia , Neoplasias Cutâneas/patologia , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Cílios/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Humanos , Hipotricose/genética , Hipotricose/metabolismo , Queratinócitos/metabolismo , Proteínas dos Microfilamentos/genética , Mutação , Neoplasia de Células Basais/genética , Neoplasia de Células Basais/metabolismo , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo
15.
J Dermatol ; 48(3): 408-412, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33222230

RESUMO

Hypotrichosis simplex (HS) is a rare form of hereditary alopecia caused by a variety of genetic mutations. Currently, only four studies regarding LSS-related HS have been reported. In this study, we try to make a definite diagnosis in two unrelated Chinese families with three pediatric patients clinically suspected of HS. Whole-exome sequencing (WES) was performed for these two families to reveal the pathogenic mutation. WES revealed two different compound heterozygous mutations in LSS in two probands that confirmed the diagnosis, including three novel mutations. In this paper, we describe a new accompanying phenotype of teeth dysplasia in a HS patient. Moreover, we provide a review of all reported LSS mutation-related patients and infer some potential genotype-phenotype correlations for the first time.


Assuntos
Hipotricose/genética , Transferases Intramoleculares/genética , Criança , China , Humanos , Hipotricose/diagnóstico , Mutação , Linhagem , Fenótipo , Sequenciamento do Exoma
17.
Exp Dermatol ; 29(6): 520-530, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32248567

RESUMO

BACKGROUND: Desmosomes are intercellular cadherin-mediated adhesion complexes that anchor intermediate filaments to the cell membrane and are required for strong adhesion for tissues under mechanical stress. One specific component of desmosomes is plakophilin 1 (PKP1), which is mainly expressed in the spinous layer of the epidermis. Loss-of-function autosomal recessive mutations in PKP1 result in ectodermal dysplasia-skin fragility (EDSF) syndrome, the initial inherited Mendelian disorder of desmosomes first reported in 1997. METHODS: To investigate two new cases of EDSF syndrome and to perform a literature review of pathogenic PKP1 mutations from 1997 to 2019. RESULTS: Sanger sequencing of PKP1 identified two new homozygous frameshift mutations: c.409_410insAC (p.Thr137Thrfs*61) and c.1213delA (p.Arg411Glufs*22). Comprehensive analyses were performed for the 18 cases with confirmed bi-allelic PKP1 gene mutations, but not for one mosaic case or 6 additional cases that lacked gene mutation studies. All pathogenic germline mutations were loss-of-function (splice site, frameshift, nonsense) with mutations in the intron 1 consensus acceptor splice site (c.203-1>A or G>T) representing recurrent findings. Skin fragility and nail involvement were present in all affected individuals (18/18), with most cases showing palmoplantar keratoderma (16/18), alopecia/hypotrichosis (16/18) and perioral fissuring/cheilitis (12/15; not commented on in 3 cases). Further observations in some individuals included pruritus, failure to thrive with low height/weight centiles, follicular hyperkeratosis, hypohidrosis, walking difficulties, dysplastic dentition and recurrent chest infections. CONCLUSION: These data expand the molecular basis of EDSF syndrome and help define the spectrum of both the prototypic and variable manifestations of this desmosomal genodermatosis.


Assuntos
Displasia Ectodérmica/genética , Placofilinas/genética , Dermatopatias/genética , Mutação da Fase de Leitura , Mutação em Linhagem Germinativa , Homozigoto , Humanos , Hipotricose/genética , Lactente , Ceratodermia Palmar e Plantar/genética , Mutação com Perda de Função , Masculino , Unhas Malformadas/genética , Linhagem
19.
Eur J Med Genet ; 63(3): 103739, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31421289

RESUMO

The chromatin remodeling AT-Rich interaction domain containing 1B protein (ARID1B) also known as BAF-associated factor, 250-KD, B (BAF250B) codified by the ARID1B gene (MIM#614556), is a small subunit of the mammalian SWI/SNF or BAF complex, an ATP-dependent protein machinery which is able to activate or repress gene transcription, allowing protein access to histones through DNA relaxed conformation. ARID1B gene mutations have been associated with two hereditary syndromic conditions, namely Coffin-Siris (CSS, MIM#135900) and Nicolaides-Baraitser syndromes (NCBRS, MIM#601358), characterized by neurodevelopment delay, craniofacial dysmorphisms and skeletal anomalies. Furthermore, intellectual impairment and central nervous system (CNS) alterations, comprising abnormal corpus callosum, have been associated with mutations in this gene. Moreover, ARID1B anomalies resulted to be involved in neoplastic events and Hirschprung disease. Here we report on two monozygotic male twins, displaying clinical appearance strikingly resembling NCBRS and CSS phenotype, who resulted carriers of a novel 6q25.3 microdeletion, encompassing only part of the ARID1B gene. The deleted segment was not inherited from the only parent tested and afflicted the first exons of the gene, coding for protein disordered region. We also provide, for the first time, a review of previously published ARID1B mutated patients with NCBRS and CSS phenotype and a computer-assisted dysmorphology analysis of NCBRS and ARID1B related CSS individuals, through the Face2Gene suite, confirming the existence of highly overlapping facial gestalt of both conditions. The present findings indicate that ARID1B could be considered a contributing gene not only in CSS but also in NCBRS phenotype, although the main gene related to this latter condition is the SMARCA2 gene (MIM#600014), another component of the BAF complex. So, ARID1B study should be considered in such individuals.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Deformidades Congênitas do Pé/genética , Deformidades Congênitas da Mão/genética , Hipotricose/genética , Deficiência Intelectual/genética , Micrognatismo/genética , Pescoço/anormalidades , Fatores de Transcrição/genética , Gêmeos Monozigóticos/genética , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/patologia , Anormalidades Múltiplas/fisiopatologia , Face/diagnóstico por imagem , Face/patologia , Face/fisiopatologia , Fácies , Deformidades Congênitas do Pé/diagnóstico por imagem , Deformidades Congênitas do Pé/patologia , Deformidades Congênitas do Pé/fisiopatologia , Deformidades Congênitas da Mão/diagnóstico por imagem , Deformidades Congênitas da Mão/patologia , Deformidades Congênitas da Mão/fisiopatologia , Humanos , Hipotricose/diagnóstico por imagem , Hipotricose/patologia , Hipotricose/fisiopatologia , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/patologia , Deficiência Intelectual/fisiopatologia , Masculino , Micrognatismo/diagnóstico por imagem , Micrognatismo/patologia , Micrognatismo/fisiopatologia , Mutação de Sentido Incorreto , Pescoço/diagnóstico por imagem , Pescoço/patologia , Pescoço/fisiopatologia , Fenótipo , Splicing de RNA , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA